COURSE SYLLABUS

ILSE 625 Chemistry Education

Semester A (2021), 3 (3-0-6) credit hours

Course coordinator

Asst. Prof. Pirom Chenprakhon

pirom.che@mahidol.edu

Office: Institute for Innovative Learning, Mahidol University

Instructors:

Parames Laosinchai, Ph.D. (PL) Pirom Chenprakhon, Ph.D. (PC) Supan Yodyingyong, Ph.D. (SY) parames.lao@mahidol.edu pirom.che@mahidol.edu supan.yod@mahidol.edu

Course Description

Nature of learning chemistry; misconceptions in learning chemistry; pedagogical content knowledge (PCK) for teaching chemical bonding, chemical reactions and stoichiometry, chemical thermodynamics, chemical kinetics, chemical equilibrium, electrochemistry, nanochemistry, green chemistry, biocatalyst, solar cell, spectroscopy techniques

Class Period

Thursday, 13.00-16.00, Room: Chemistry Laboratory (Online learning is also available for oversea students and in any circumstances face-to-face meeting are not possible) Online: https://mahidol.webex.com/mahidol/j.php?MTID=m45773c782672cc87b6b5f924c55413f2 Meeting number: 2643 457 3757 Password: ILSE625 Host key: 144006

Course Learning Outcomes

At the end of this course, students will be able to:

Cοι	urse Learning Outcomes (CLOs)	PLOs	Sub-PLOs
1)	Display appropriate ethical behavior in using existing	1	1.1
	learning and teaching material		
2)	Understand nature of learning in chemistry	2	2.2
3)	Analyze chemistry contents under TPCK framework	3, 5	3.1, 5.2
4)	Design an instruction to improve students'	3	3.2
	understanding in selected topics in chemistry		
5)	Propose ways to solve students' difficulties in learning	4, 5	4.1, 5.1, 5.2
	chemistry		5.3
6)	Evaluate in-depth conceptual understanding of oneself	6	6.1, 6.2, 6.3
	in chemistry		
7)	To display ability to collaborate with others	8	8.2

Readings

Readings will consist of articles drawn from the primary literature of chemical education and some chapters from the books, e.g., Theoretical Frameworks for Research in Chemistry/Science Education by George M. Bodner & Marykay Orgill; Chemical Education: Towards Research-based Practice by John K. Gilbert; Misconception in chemistry by Hans-Dieter Barke, Al Hazari, Sileshi Yitbarek and General Chemistry. Copies of some articles will be provided by the instructors.

<u>Course Outline</u>

Week	Date	Content	CLOs	CLOs Teaching approaches	
1	11 Aug 22	Nature of learning	2, 7	Lecture, Discussion, Case	
	II AUg ZZ	chemistry		study	51, PC, PL
2	19 10 22	The role of TPCK for	3, 7	Lecture, Discussion, Case	
2	10 AUG 22	chemistry teaching		study	51, FC, FL
		* Chemical bonding,	1, 2, 3,	Laboratory experiment	
3	25 Aug 22	misconception about	4, 5, 6,	/Demonstration, Discussion	SY, PC, PL
		chemical bonding	7		
		* Acids and bases,	1, 2, 3,	Laboratory experiment	
4	1 Sep 22	misconception about	4, 5, 6,	/Demonstration, Discussion	SY, PC, PL
		acids and bases	7		
		* Chemical reactions and	1, 2, 3,	Laboratory experiment	
		stoichiometry,	4, 5, 6,	/Demonstration, Discussion	
5	8 Sep 22	misconception about	7		SY, PC, PL
		chemical reaction and			
		stoichiometry			
		* Chemical	1, 2, 3,	Laboratory experiment	
	15 Sep 22	thermodynamics,	4, 5, 6,	/Demonstration, Discussion	
6		misconception about	7		SY, PC, PL
		chemical			
		thermodynamics			
		*Chemical kinetics,	1, 2, 3,	Laboratory experiment	
7	22 Sep 22	misconception about	4, 5, 6,	/Demonstration, Discussion	SY, PC, PL
		chemical kinetics	7		
		*Chemical equilibrium,	1, 2, 3,	Laboratory experiment	
8	29 Sep 22	misconception about	4, 5, 6,	/Demonstration, Discussion	SY, PC, PL
		chemical equilibrium	7		
		* Electrochemistry,	1, 2, 3,	Laboratory experiment	
9	6 Oct 22	misconception about	4, 5, 6,	/Demonstration, Discussion	SY, PC, PL
		electrochemistry	7		

			2, 3, 6,	Lecture, Laboratory	
10	20 Oct 22	Solar cell	7	experiment /Demonstration,	SY, PC, PL
				Discussion	
			2, 3, 6,	Lecture, Laboratory	
11	27 Oct 22	Green chemistry	7	experiment /Demonstration,	SY, PC, PL
				Discussion	
			2, 3, 6,	Lecture, Laboratory	
12	3 Nov 22	Biocatalyst	7	experiment /Demonstration,	PC, SY, PL
				Discussion	
		Nanochemistry,	2, 3, 6,	Lecture, Laboratory	
13	10 Nov 22	misconception about	7	experiment /Demonstration,	SY, PC, PL
		nanochemistry		Discussion	
			2, 3, 6,	Lecture, Laboratory	
14	17 Nov 22	Spectroscopy techniques	7	experiment /Demonstration,	SY, PC, PL
				Discussion	
		Digital Learning	2, 3, 6,	Lecture, Discussion, Case	
15	24 Nov 22	Technologies in	7	study	SY, PC, PL
		Chemistry Education			
16	1 Dec 22	Examination	2, 3	-	SY, PC, PL

* Assignment

Course Requirements

• Class participation (10%): To evaluate CLO 7

Each student is expected to discuss and analyze the concepts presented during the learning activities and oral presentations.

• Class assignments (60%): To evaluate CLO1-CLO5

Students were assigned to search for up-to-date learning activity/laboratory experiment related to concepts learned in class, analyze strengths and weaknesses of the activity/laboratory experiment, and apply or adapted activity/laboratory experiment and demonstrate in the class.

• Examination (30%): To evaluate CLO2 and CLO3

At the end of this class, each student will be assessed the chemical contents by written exam.

Final grades will be determined as follows:

85 - 100%	=	А,
75 - < 84%	=	В+,
65 - < 74%	=	В,
55 - < 64%	=	C+,
< 55%	=	I

Important remarks:

The final score for each student will be rounded to the nearest whole number prior applying to the assessment criteria. In addition, a student's final grade may be higher than the suggested guideline if the student's score is close enough (< 1% gap) to the next higher score. That is, close scores will likely earn the same final grade.

For <u>audit students</u> to get a passing grade, they are required to attend at least 80% of class time (13 out of 16 sessions) with active participation as required for credit students. Also, it's mandatory for audit students to complete assignments given by the instructors

	Present (1)	Attentive (2)	Engaging (3)	Satisfactory (4)	Exemplary (5)	
Active	Active Show up but Seldom		Occasionally	Regularly	Proactively and	
contribution	never	contribute to	contribute to	contribute to	regularly	
	contribute to	class	class discussion	class discussion	contribute to	
	class	discussion,			class discussion	
discussion		unless asked				
Active	Lack of	Listen when	Listen when	Appropriately	Appropriately	
listening	attention to	others discuss	others discuss	listen when	listen when	
_	the discussed	and	and sometimes	others discuss	others discuss	
	topic occasionall		respond to the	and consistently	and usefully	
		respond to	discussed topic	respond to the	respond to the	
		the discussed		discussed topic	discussed topic	
		topic				

Criteria for evaluation class assignments (10 points)

Students were assigned to search for up-to-date learning activity/laboratory experiment related to concepts learned in class, analysis strength and weakness of the activity/laboratory experiment, and apply or adapt activity/laboratory experiment and demonstrate in the class. Each assignment will be evaluated according to the following criteria.

Instruction: Please evaluate students according to these aspects.

Aspects	Students			
1) Clearly explain concept related to the selected				
learning activity/laboratory (3 points)				
2) Correctly analyze strengths and weaknesses of				
the selected learning activity/laboratory (2 points)				
3) Ability to apply or adapt activity/laboratory and				
demonstrate in the class (5 points)				
Total (10 points)				

<u>Appendix</u>

 Table 1 Summary the expected learning outcomes, teaching and learning approach, and

 summative assessment method used in the course

Assessment					S	ub-PL	Os						%
methods	1.1	2.2	3.1	3.2	4.1	5.1	5.2	5.3	6.1	6.2	6.3	8.2	
Active participation												10	10
Class assignments	5.45	5.45	5.41	5.45	5.45	5.45	5.45	5.45	5.45	5.45	5.45		60
Final examination		10	10	10									30
Total	5.45	15.45	15.45	15.45	5.45	5.45	5.45	5.45	5.45	5.45	5.45	10	100

Table 2 The PLOs and key performance indicators of the Master of Science Program in Science

and Technology Education (International Program) in Academic Year 2020.

PLOs	Key Performance Indicators
PLO 1: Display moral and ethical behavior for science	1.1 Display moral and ethical behavior that aligns with
and technology educators	the code of conduct for science and technology
	educators
PLO 2: Apply principle in science and technology	2.2 Design learning activities for science and/or
education to design and implement learning	technology classes
activities in science and/or technology classes	
appropriately	
PLO 3: Synthesize solutions to learning problems in	3.1 Analyze learning problems in the field of study
the field of study	3.2 Apply PLO 2 to synthesize new ways and/or means
	to solve the learning problems
PLO 4: Conduct science and technology education	4.1 Propose a research project in science and technology
research by integrating knowledge in the field of	education predicated on educational research
study	methodology
PLO 5: Improve innovations in science and	5.1 Display ability to search for existing innovations in
technology education consistent to knowledge in the	science and technology education consistent to
field of study and social contexts	knowledge in the field of study
	5.2 Analyze strengths and weaknesses of the existing
	innovation
	5.3 Propose ways and/or means to improve the existing
	innovation
PLO 6: Evaluate knowledge of oneself	6.1 Classify criteria for self-evaluation
	6.2 Reflect oneself against the criteria
	6.3 Evaluate oneself validly and reliably
PLO 8: Display leadership quality and ability to	8.2 Display ability to effectively collaborate with others
effectively collaborate with others	