COURSE SYLLABUS

ILSE 653 Computer Science Education

Semester A (2022), 3 (3-0-6) credit hours

Course Coordinator

Wararat Wongkia, Ph.D. (WW) <u>wararat.won@mahidol.ac.th</u>

Instructors

Asst.Prof. Monamorn Preecharatana, Ph.D. (MP) <u>monamorn.teaching@gmail.com</u>

Asst.Prof. Suchai Nopparatjamjomras, Ph.D. (SN) <u>suchai.nop@mahidol.edu</u>

Asst.Prof. Wararat Wongkia, Ph.D. (WW) <u>wararat.won@mahidol.ac.th</u>

Tinnapob Phengphom, Ph.D. (TP) <u>tinnapob.phe@mahidol.edu</u>

Office: Room 2003, Institute for Innovative Learning, Mahidol University

Tel: 02-441-9723 # 2004

Course Description

Educational reform that effects the learning and teaching of computer science; computer science curricula; synthesis of learning theories and teaching-learning approaches in promoting the learning of programming, data structure, and algorithm; the use of technology in learning and teaching of computer science; instrument selection for measurement and evaluation; constructing learning and teaching plans in computer science; micro-teaching of a computer-science subject

Course Objectives

Students should be able:

Course Learning Outcome (CLO)	Expected Learning	Sub-ELO
	Outcome (ELO)	
CLO1: To understand the computer science curriculum	ELO 2	sub-ELO 2.1
CLO2: To understand and analyze various instructional methods	ELO 1	sub-ELO 1.2
in computer science	ELO 2	sub-ELO 2.2
CLO3: To explain the concept of programming, artificial	ELO 6	sub-ELO 6.1
intelligence, simulation, and microcontroller		and 6.4
		(Ph.D.)

Updated 19 July 2022 Page 1/7

Course Learning Outcome (CLO)	Expected Learning	Sub-ELO
	Outcome (ELO)	
	ELO 7	sub-ELO 7.2
CLO4: To apply PCK in planning a lesson of a selected topic	ELO 2	sub-ELO 2.2
		and 2.3
	ELO 3	sub-ELO 3.1
		and 3.2
CLO5: Design an instruction to improve students' learning in the	ELO 1	sub-ELO 1.1
selected computer science topic	ELO 2	sub-ELO 2.1,
		2.2 and 2.3

Venue: Room 303 Institute for Innovative Learning (Online learning is also available for overseas students and in any circumstances where face-to-face meetings are not possible)

Online Link: https://mahidol.webex.com/mahidol/j.php?MTID=mda46de1df6dcda88c6d397e6701528c9

Meeting number: 2643 542 8735

Password: ILSE653 Host key: 624968

Course Outline (Thursday, 13.00-16.00)

Week	Date	Topic	Instructor	Teaching approaches	CLO
1	11 Aug	Introduction to Computer science education	WW	Discussion, Case study	CLO1
2	18 Aug	PCK in Programming I	WW	Discussion, Case study	CLO2 and 3
3	25 Aug	PCK in Programming II	WW	Discussion, Case study	CLO2 and 3
4	1 Sep	PCK in Programming III	WW	Discussion, Case study	CLO4 and 5
5	15	DCV in Drogramming IV*	WW	Discussion, Demonstration,	CLO2, 3, 4,
3	Sep	PCK in Programming IV*	VVVV	Case study	and 5
6	22	PCK in Artificial Intelligence I	WW	Discussion, Case study	CLO2 and 3
0	Sep	PCK III Artificial intettigence i	VVVV		
7	29	DCK in Artificial Intelligence II	WW	Discussion, Case study	CLO4 and 5
,	Sep				
8	6 Oct PCK in Artificial Intelligence III*		WW	Discussion, Demonstration,	CLO2, 3, 4,
0	0 Oct	PCK III Artificial intettigence III	VVVV	Case study	and 5
9	20 Oct	PCK in Simulation I MP WW		Discussion, Case study	CLO2 and 3
10	27 Oct	PCK in Simulation II	MP WW	Discussion, Case study	CLO4 and 5
11	3 Nov	Nov PCK in Simulation III*	MP WW	Discussion, Demonstration,	CLO2, 3, 4,
11	1 3 NOV PCK III SIMULATION III.		IVIF VVVV	Case study	and 5

Updated 19 July 2022 Page 2/7

Week	Date	Topic	Instructor	Teaching approaches	CLO
12	10	PCK in Microcontroller I	SN TP	Discussion, Case study	CLO2, 3, 4,
12	Nov	PCK III MICIOCONTIONEI I	31/11/1		and 5
1.2	17	PCK in Microcontroller II*	SN TP	Discussion, Case study	CLO2, 3, 4,
13	Nov	PCK IN MICrocontroller II"	SN IP		and 5
14	24	Dianning computer science instruction	MP SN TP	Discussion, Case study	CLO2, 3, 4,
14	Nov	Planning computer science instruction	WW		and 5
15	1 Doc	Debarring computer science instruction*	MP SN TP	Discussion, Demonstration,	CLO2, 3, 4,
15	1 Dec	Rehearsing computer science instruction*	WW	Case study	and 5

^{*} have an assignment

Readings

Committee on *How People Learn*, National Research Council (U.S.). (2005). *How Students Learn: Science in the Classroom*. (M. S. Donovan & J. D. Bransford, Eds.) National Academies Press.

Course Requirements

For credit registration

• Class attendance and participation (20%) To evaluate CLO 1

Each student is expected to discuss and analyze the concepts presented during the learning activities and oral presentations.

• Class assignments (80%) To evaluate CLO2, 3, 4, and 5

From time to time, there will be assignments such as searching for information to extend the concepts learned in class or applying the concepts to various situations. In Week 5, 8, 11, and 15, each student is assigned to prepare teaching and demonstrate the teaching in the class. Verbal feedback will be provided at the end of the student's presentation.

Final grades will be determined as follows:

>= 85% A, >= 75 and <85% B⁺, >= 65 and <75% B, >= 55 and <65% C+, and < 55%

In addition, a student's final grade may be higher than the suggested guideline if the student's score is close enough (<1% gap) to the next higher score. That is, close scores will likely earn the same final grade.

Updated 19 July 2022 Page 3/7

For <u>audit</u> registration

• Class attendance and participation

Attendance 80% and active participation 80%

• Class assignments

In Week 5, 8, 11, and 15, each student is assigned to prepare teaching and demonstrate the teaching in the class (at least one mathematical topic).

Rubric for class participation

	Present (1)	Attentive (2)	Engaging (3)	Satisfactory (4)	Exemplary (5)
Active contribution	Show up but never contribute	Seldom contribute to class	Occasionally contribute to class discussion	Regularly contribute to class discussion	Proactively and regularly contribute to
	to class discussion	discussion, unless asked			class discussion
Active listening	Lack of attention to the discussed topic	Listen when others discuss and occasionally respond to the	Listen when others discuss and sometimes respond to the discussed topic	Appropriately listen when others discuss and consistently respond to the	Appropriately listen when others discuss and usefully respond to the
		discussed topic		discussed topic	discussed topic

Updated 19 July 2022 Page 4/7

Rubric for assignment

	Capstone	Milestones		Benchmark
	4	3	2	1
Decomposition	Breaks a complex	Breaks a complex	Breaks a complex	Breaks a complex
	problem into clearly	problem into clearly	problem into	problem into
	described, well-defined,	described subproblems	subproblems that lack	subproblems that are
	and distinct-but-related	that are distinct-but-	efficiency, fail to have	inefficient, described
	subproblems that are	related but lack	sufficient descriptions,	poorly, overlap or
	easier to solve than the	efficiency, although they	and overlap, although	closely related, and fail
	original problem but	solve the original	they solve the original	to completely solve the
	when combined	problem.	problem.	original problem.
	efficiently solves the			
	original problem.			
Algorithms	Creates a logical,	Create a logical	Create a logical	Create a sequence of
	efficient, and well-	sequence of steps that	sequence of steps that	steps that do not solve a
	described sequence of	are well-described (e.g.	solve a problem or	problem or achieve a
	steps or instructions to	unambiguous, precise)	achieve a goal but the	goal. The step lack
	solve a problem or	and solve a problem or	steps are poorly	efficiency, sufficient
	achieve a goal.	achieve a goal but the	described (e.g.	descriptions, and are not
		steps are inefficient e.g.	ambiguous, vague	described or
		not in an optimal		documented.
		sequence, overlapping,		
		duplicative, or		
		unnecessary.		
Abstraction	Create an accurate-but-	Create an accurate-but-	Create an accurate-but-	Create a representation
	simplified representation	simplified representation	simplified representation	of a process or group of
	of a process of a group	of a process or group of	of a process or group of	objects that is not
	of objects to solve the	objects to solve the	objects to solve the	accurate, not sufficiently
	problem or meet the	problem or meet the	problem or meet the	simplified or fails to
	goal. Selects essential	goal. Selects essential	goal. Fails to select all	solve the problem or
	characteristics by filtering	characteristics by filtering	essential characteristics	meet the goal.
	out unnecessary	out unnecessary	by filtering out	
	information. Can be used	information. Cannot be	unnecessary information.	
	to solve other problems	used to solve other	Cannot be used to solve	
	or goals.	problem or goals.	other problem or goals.	

Updated 19 July 2022 Page 5/7

	Capstone	Milestones		Benchmark
	4	3	2	1
Readability	The code is	The code is fairly easy to	The code is readable	The code is poorly
	exceptionally well	read.	only by someone who	organized and very
	organized and very easy		knows what it is	difficult to read.
	to follow.		supposed to be doing.	

Adapted from Computational Thinking Rubric (NSF)

The PLOs and key performance indicators of the Master of Science Program in Science and Technology Education (International Program) in Academic Year 2020.

PLOs	Key Performance Indicators
PLO 1: Display moral and ethical	1.1 Display moral and ethical behavior that aligns with the code
behavior for science and technology	of conduct for science and technology educators
educators	1.2 Follow the ethical code of conduct in educational research
PLO 2: Apply principle in science and	2.1 Adopt instructional sciences to improve learning in science
technology education to design and	and technology education
implement learning activities in	2.2 Design learning activities for science and/or technology
science and/or technology classes	classes
appropriately	2.3 Implement the designed activities to improve learning in
	science and technology education
	2.4 Assess students' learning achievement
PLO 3: Synthesize solutions to	3.1 Analyze learning problems in the field of study
learning problems in the field of	3.2 Apply PLO 2 to synthesize new ways and/or means to solve
study	the learning problems
PLO 4: Conduct science and	4.1 Propose a research project in science and technology
technology education research by	education predicated on educational research methodology
integrating knowledge in the field of	4.2 Conduct science and technology education research
study	4.3 Publish an international peer-reviewed research article
PLO 5: Improve innovations in	5.1 Display ability to search for existing innovations in science and
science and technology education	technology education consistent to knowledge in the field of
consistent to knowledge in the field	study
of study and social contexts	5.2 Analyze strengths and weaknesses of the existing innovation

Updated 19 July 2022 Page 6/7

PLOs	Key Performance Indicators	
	5.3 Propose ways and/or means to improve the existing	
	innovation	
	5.4 Use the improved innovation for others' benefits and/or	
	applicable to social contexts	
PLO 6: Evaluate knowledge of	6.1 Classify criteria for self-evaluation	
oneself	6.2 Reflect oneself against the criteria	
	6.3 Evaluate oneself validly and reliably	
PLO 7: Display the ability to control	7.1 Display the ability to control oneself	
and improve oneself	7.2 Display the ability to improve oneself	
PLO 8: Display leadership quality and	8.1 Display leadership quality to effectively collaborate with	
ability to effectively collaborate with	ch others	
others	8.2 Display ability to effectively collaborate with others	

Updated 19 July 2022 Page 7/7