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Abstract Finding the content validity of a test is a crucial step in assuring its quality. Enlisting the help 

of a team of content specialists to rate each item on the test is the simplest and most effective way to do 

so. Rovinelli and Hambleton (1977) adapted a procedure proposed by Hemphill and Westie (1950) and 

adjusted the latter’s formula to compute the Index of Item-Objective Congruence (IIOC) which can be 

used for measuring content validity. This article explains the mathematical reasons behind the IIOC 

formula and simplifies its form so that the new form can be easily adapted to a test item with multiple 

objectives. In addition, this form can be used with any rating scale. Two extensions of the IIOC formula 

proposed by another team of authors are shown to be incompatible with each other and with the form 

derived in this article. 
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Introduction 

 

One of the major concerns when developing a test to measure a set of objectives is 

whether the test actually measures the intended objectives. A simple yet effective way to 

determine this is to enlist the help of a team of content specialists to rate each item on the 

test. After a test developer specifies the set of objectives to be measured and generates all 

the test items, it is up to a team of specialists to rate these items relative to these objectives. 

Although there usually are several objectives, far too many test developers restrict each 

specialist to rate each item relative to only one objective, the one that the test developers 

intend for the item to measure. This practice eliminates the specialist’s freedom to choose 

the objective(s) that may be more closely related to the item than the one specified by the 

test developers (Turner and Carlson, 2003). 

Provided that a test developer does not influence specialists’ decisions, the next 

concern is to select an appropriate rating task. As pointed out by Rovinelli and Hambleton 

(1977), the rating task given to specialists should be simple, clear, non-tedious, and non-

time-consuming. They described three procedures for collecting specialists’ judgments: the 

Hemphill and Westie’s (1950) categorizing procedure, the semantic differential rating 

procedure, and the matching procedure. The first procedure employed a scale with three 

familiar ratings: +1 if a specialist felt that an item measured an objective; 0 if a specialist 

was undecided whether an item measured an objective; and −1 if a specialist felt that an 

item did not measure an objective. As the names suggest, the second procedure utilized a 

semantic differential scale (Osgood et al., 1957) while the last did not involve any scale. 

Rovinelli and Hambleton conducted an empirical study of the three procedures and 

concluded that the Hemphill-Westie categorizing procedure was most suitable for collecting 

content specialists’ judgments about whether an item measured an intended objective. It is 

this procedure which is the focus of this article. 
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Index of homogeneity of placement 
 

Hemphill and Westie (1950) developed a series of scales to objectively describe group 

characteristics. Among them was the index of homogeneity of placement which was used 

for constructing a personality test. Once a test developer selected a set of personality 

dimensions and came up with test items, a team of psychological content specialists would 

judge whether each item applied to any specified dimensions. In this kind of personality test, 

it was typical for one item to apply to only one dimension. Thus, for an item to be selected, 

it had to clearly apply to one dimension and not to any others. Table 1 shows a template of 

the form in which each expert judge had to fill. 

Having collected the judgments from all the experts, the index of homogeneity of 

placement for item 𝑘 on dimension 𝑖, 𝐼𝑖𝑘, can be calculated as follows: 
 

𝐼𝑖𝑘 =
𝑁∑ 𝑋𝑖𝑗𝑘

𝑛
𝑗=1 −∑ ∑ 𝑋𝑙𝑗𝑘

𝑛
𝑗=1

𝑁
𝑙=1

2∙2𝑛(𝑁−1)+∑ ∑ 𝑋𝑙𝑗𝑘
𝑛
𝑗=1

𝑁
𝑙=1 −∑ 𝑋𝑖𝑗𝑘

𝑛
𝑗=1

  

where 

𝑁 is the number of personality dimensions, 

𝑛 is the number of content specialists, and 

𝑋𝑖𝑗𝑘 is the rating of item 𝑘 as a measure of dimension 𝑖 by content specialist 𝑗. 

To make sense of this formula, let us first look at example ratings of one item as shown 

in Table 2. The first term in the numerator results from substituting the ratings on the 

intended dimension (in black) for the ratings on other dimensions (in gray) and then 

summing all the ratings. The second term in the numerator (double summations) is just the 

summation of all the original ratings. Thus, the numerator represents the extent to which the 

ratings on the intended dimension exceed the ratings on other dimensions. The term 𝑛(𝑁 −
1) in the denominator represents the number of ratings on other dimensions while the 

leading factor 2 comes from the maximum difference between the two most extreme ratings 

(+1 and −1). Multiplied together, they represent the maximum magnitude of the numerator. 

Without other terms in the denominator, the quotient already makes sense as it represents 

the collective opinion of how well this item applies to the intended objective, normalized to 

always fall between −1 and 1. Other terms in the denominator were probably included by 

mistake. 
 

Table 1 Template of the form for a content specialist with N personality dimensions and 𝑀 

test items. A value of +1 indicates that the item applies to the dimension; 0: indecisiveness; 

−1: the item does not apply to the dimension. Item 1 applies to dimension 1 only. Item 2 

applies to dimension 𝑁  and may or may not apply to dimension 2. Item 𝑀  applies to 

dimensions 2 and 𝑁. 

Item Dimension 1 Dimension 2 … Dimension 𝑵 

1 +1 −1 … −1 

2 −1 0 … +1 
⋮ ⋮ ⋮  ⋮ 

𝑀 −1 +1 … +1 

 

Table 2 Example of ratings of an item on five personality dimensions by four judges. 

Dimension 3 (in black) is the intended one for this item. 
Judge Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5 

1 +1 −1 +1 −1 −1 

2   0   0 +1 −1 −1 

3 +1   0 +1   0 −1 

4   0 −1 +1 −1 −1 

Average            0.5     −0.5   1      −0.75 −1 
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Index of Item-Objective Congruence (IIOC) 

 

Rovinelli and Hambleton (1977) were interested in assessing the content validity of 

items in a criterion-referenced test. They realized that one could adapt Hemphill and 

Westie’s procedure simply by substituting “objective” for “personality dimension” and only 

the term 2𝑛(𝑁 − 1) remains in the denominator. They coined the term IIOC for the new 

index and rearranged the formula by eliminating the summation of the ratings on the 

intended objective from both terms in the numerator to obtain the formula 

 

𝐼𝑖𝑘 =

(𝑁−1)∑ 𝑋𝑖𝑗𝑘
𝑛
𝑗=1 −∑ ∑ 𝑋𝑙𝑗𝑘

𝑛
𝑗=1

𝑁
𝑙=1
𝑙≠𝑖

2𝑛(𝑁−1)
. 

The quality of IIOC depends largely on the panel of judges. After collecting the 

ratings, one should always try to determine how much the judges agree about the ratings. 

Several methods to find the inter-rater reliability are available but Rovinelli and Hambleton 

recommended using Lu’s (1971) coefficient of agreement for each objective separately. 

Hambleton et al. (1978) and Thorn and Deitz (1989) provided good explanations of IIOC 

and supported the use of Lu’s coefficient of agreement. 

 

Another characterization of IIOC 

 

The first term in the numerator of IIOC formula now consists of 𝑁 − 1 copies of 

ratings on the intended objective 𝑘, which cancels out the same factor in the denominator. 

Each copy contains 𝑛 ratings, one from each expert. Thus, when the sum is divided by 𝑛 in 

the denominator, it yields the average of the ratings of item 𝑘 on objective 𝑖. That is, the 

first term divided by 𝑛(𝑁 − 1) represents the average opinion of experts about item 𝑘 on 

objective 𝑖. 
The inner summation of the second term in the numerator contains 𝑛 ratings of item 𝑘 

on one of the unintended objectives. Since there are 𝑁 − 1 such objectives, this second term 

contains 𝑛(𝑁 − 1)  ratings. Thus, when the sum is divided by the same factor in the 

denominator, it yields the average of the ratings of item 𝑘 on unintended objectives. That is, 

the second term divided by 𝑛(𝑁 − 1) represents the average opinion of experts about item 

𝑘 on unintended objectives. 

Since 𝑛(𝑁 − 1) in the denominator is divided into both terms in the numerator, only 

the factor 2 remains. Again, it is the difference between the maximum and minimum ratings. 

Let 𝑚 denote this difference, 𝜇𝑖𝑘  denote the average opinion of experts about item 𝑘 on 

objective 𝑖, and 𝜇𝑖̅𝑘 denote the average opinion of experts about item 𝑘 on objectives other 

than 𝑖. The formula for IIOC now becomes 

 𝐼𝑖𝑘 =
𝜇𝑖𝑘−𝜇�̅�𝑘

𝑚
. (1) 

Crocker and Algina (1986) gave another characterization of IIOC. Let 𝜇𝑘 denote the 

average opinion of experts about item 𝑘 on all objectives. They stated that 

 𝐼𝑖𝑘 =
𝑁(𝜇𝑖𝑘−𝜇𝑘)

2𝑁−2
. (2) 

To see whether the two characterizations are equivalent, notice that 

 𝜇𝑘 =
𝜇𝑖𝑘+(𝑁−1)𝜇�̅�𝑘

𝑁
. (3) 

That is, the overall average opinion is just the weighted average of the two average 

opinions, one on objective 𝑖 and the other on objectives other than 𝑖. Substituting (3) into 

(2) and grouping the terms containing 𝜇𝑖𝑘 yields 

𝐼𝑖𝑘 =
𝑁[(𝑁−1)𝜇𝑖𝑘−(𝑁−1)𝜇�̅�𝑘]

𝑁(2𝑁−2)
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which is the same as (1) after canceling 𝑁(𝑁 − 1) from both the numerator and the 

denominator and replacing 2 with 𝑚. 

 

Adapting IIOC to a test item with multiple objectives 

 

Not only can (1) be used for any rating scale, but it can also be adapted to a case where 

each test item may measure multiple objectives. The only thing we have to do is interpret 𝑖 
as representing a set of valid objectives and 𝑖 ̅as the complement of 𝑖. For any item 𝑘, the 

set of valid objectives 𝑖 and IIOC can be found using the following steps: 

1. Let 𝑖 ̅contain all the objectives and let IIOC be 0. 

2. If all the objectives in 𝑖 ̅have the same average, stop. 

3. Among the objectives in 𝑖,̅ move those (maybe only one) with the highest average to 

𝑖. 
4. Calculate the new IIOC according to (1). 

5. If the new IIOC is greater than IIOC, set IIOC to the new value and go to step 2. 

Otherwise, reverse the most recent steps 3 and 4 and stop. 

If the resulting IIOC is sufficiently high (see Hambleton et al., 1978; Rovinelli & 

Hambleton, 1977; and Thorn & Deitz, 1989 for guidelines), the set of objectives 𝑖 should 

be taken as the objectives upon which the experts agree to be measured by item 𝑘. When all 

the objectives have the same average and 𝜇𝑘 is high enough, it can be taken as IIOC and 

item 𝑘 has been judged as measuring all the objectives. 

As an illustrative example, consider the ratings in Table 2 (substitute objective for 

dimension). The first objective to be moved to set 𝑖 in step 3 is objective 3 which yields 

IIOC of 
1−(0.5−0.5−0.75−1)/4

2
= 0.71875. 

The second objective to be moved to set 𝑖 is objective 1 which results in IIOC of 
(1 + 0.5)/2 − (−0.5 − 0.75 − 1)/3

2
= 0.75 

which is greater than the preceding value. It is obvious that moving the next objective 

(objective 2) to set 𝑖 would lower IIOC and the procedure would stop after reversing this 

move in step 5. Thus, item 𝑘 measures objectives 1 and 3 with IIOC of 0.75. Notice that had 

the average opinion on objective 1 be any lower, the procedure would yield only objective 

3 as the valid objective. Thus, experts’ opinions are all that matters when deciding whether 

an item measures one or multiple objectives. As a result, IIOC always falls between 0 

(instead of −1) and 1. 

The procedure above employs only the average opinions. That is, once the averages 

have been calculated, one needs not consider each expert’s opinion individually. In effect, 

the procedure finds the set of objectives 𝑖 that maximizes IIOC for each item. In practice, 

one can almost always determine the set 𝑖 without following the procedure. Let us use the 

example in Table 3 to demonstrate how to do this. 

Experts unanimously agree that item 1 measures objectives 1 and 2 but does not 

measure objectives 3–5. So 𝜇{1,2}1 = 1, 𝜇{3,4,5}1 = −1, and 𝐼{1,2}1 = (1 − (−1))/2 = 1. 

For item 2, experts tend to think that it measures objectives 2 and 3 but does not measure 

objectives 1, 4, and 5. Thus 𝜇{2,3}2 = (0.75 + 0.5)/2 = 0.625 , 𝜇{1,4,5}2 = (−1 − 0.5 −

0.75)/3 = −0.75 , and 𝐼{2,3}2 = (0.625 − (−0.75))/2 = 0.6875 . The average experts’ 

opinions for items 3 and 4 are mirror images of each other. The question is whether the 

objective about which experts’ opinions are inconclusive should be included in the set 𝑖. 
One can see that, for item 3, adding objective 4 to the set 𝑖 = {5} would lower 𝜇𝑖𝑘 by 0.5 

while adding it to the set 𝑖̅ = {1,2,3} would increase 𝜇𝑖̅𝑘 by only 0.25. That is, the latter 
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choice would maximize IIOC. The opposite is true for item 4. The procedure tends to put 

an inconclusive item on the side with more objectives. 

 

Table 3 Average experts’ opinions and Index of Item-Objective Congruence when some 

items measure multiple objectives. The symbol * indicates the objective(s) measured by 

each item. 

Item 
Average experts’ opinions on objective 

IIOC 
1 2 3 4 5 

1 1* 1* −1 −1 −1 1 

2 −1 0.75* 0.5* −0.5 −0.75 0.6875 

3 −1 −1 −1 0 1* 0.875 

4 −1 0* 1* 1* 1* 0.875 

 

Discussion 

 

Turner and Carlson (2003) proposed another formula for IIOC that could be applied 

to multidimensional items. The formula was 

 𝐼𝑖𝑘 =
𝑁𝜇𝑖𝑘−(𝑁−|𝑖|)𝜇�̅�𝑘

2𝑁−|𝑖|
  (4) 

where |𝑖| denoted the number of objectives in set 𝑖. In special cases where 𝜇𝑖𝑘 = −𝜇𝑖̅𝑘, 𝐼𝑖𝑘 

would equal to 𝜇𝑖𝑘 which agrees with IIOC computed by using (1). However, if 𝜇𝑖𝑘 ≠ −𝜇𝑖̅𝑘, 

the two formulas would yield different results. For the ratings in Table 2, if set 𝑖 contains 

only objective 3, (4) would yield IIOC of 
5∙1−(5−1)(0.5−0.5−0.75−1)/4

2∙5−1
= 0.75  

instead of 0.71875, which would lead to the conclusion that we may take only objective 3 

(instead of objectives 1 and 3) to be measured by this item. 

Turner and Carlson also referred to Turner et al. (2002) for a SAS/IML® macro that 

could be used for computing (4). However, the latter article gave the formula for IIOC as 

 𝐼𝑖𝑘 =
(𝑁+2|𝑖|−2)∑ 𝑋𝑖𝑗𝑘

𝑛
𝑗=1 −|𝑖| ∑ ∑ 𝑋𝑙𝑗𝑘

𝑛
𝑗=1

𝑁
𝑙=1

2𝑛(𝑁−1)|𝑖|
. (5) 

When |𝑖| = 1, this reduces to the original IIOC formula. Hence, it does not agree with 

(4). On the other hand, when 𝜇𝑖𝑘 = −𝜇𝑖̅𝑘, 𝐼𝑖𝑘 would again equal to 𝜇𝑖𝑘 which equals to the 

true IIOC. Thus, we cannot test this formula with the ratings in Table 2. Let us change all 

the ratings for objective 1 to be +1 and set 𝑖 contains objectives 1 and 3. IIOC computed by 

using (1) is 
(1+1)/2−(−0.5−0.75−1)/3

2
= 0.875  

while that computed by using (5) is 
(5+2∙2−2)∙8−2∙(−1)

2∙4∙(5−1)∙2
= 0.90625. 

Thus, (5) is not equivalent to (1). 

In conclusion, among the three formulas for IIOC (formulas (1), (4), and (5)) that may 

be adaptable to test items with multiple objectives, the one derived in this article (formula 

(1)) is the only sensible adaptation. Furthermore, it is the most elegant and can be used with 

any rating scale. The authors of the other formulas never explained why their formulas 

should take those forms. 

The proposed formula and procedure for IIOC allow experts to give their opinions 

without the influence of the test developer. Besides, both are easily implemented. All a test 

developer has to do is prepare the lists of both the items and the objectives and a table similar 

to Table 1. Once the ratings are obtained, IIOC can be calculated manually as illustrated in 

the previous section or with the help of an electronic spreadsheet. 
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